高中数学教学计划

时间:2025-11-09 10:54:27
高中数学教学计划汇编6篇

高中数学教学计划汇编6篇

时间就如同白驹过隙般的流逝,又迎来了一个全新的起点,来为今后的学习制定一份计划。想学习拟定计划却不知道该请教谁?以下是小编收集整理的高中数学教学计划6篇,欢迎阅读与收藏。

高中数学教学计划 篇1

为了做好这学期的数学教学工作,我计划做好以下几方面的工作:

1、理论学习:

抓好教育理论个性是最新的教育理论的学习,及时了解课改信息和课改动向,转变教学观念,构成新课标教学思想,树立现代化、科学化的教育思想。

2、做好各时期的计划:

为了搞好教学工作,以课程改革的思想为指导,根据学校的工作安排以及数学教学任务和资料,做好学期教学工作的总体计划和安排,并且对各单元的进度状况进行详细计划。

3、备好每堂课

认真钻研课标和教材,做好备课工作,对教学状况和各单元知识点做到心中有数,备好学生的学习和对知识的掌握状况,写好每节课的教案为上好课带给保证,做好课后反思和课后总结工作,以提高自己的教学理论水平和教学实践潜力。

4、做好课堂教学

创设教学情境,激发学习兴趣,爱因斯以前说过:“兴趣是最好的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学资料,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学资料语言生动。想尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。

5、批改作业

精批细改每一位学生的每份作业,学生的作业缺陷,做到心中有数。对每位学生的作业订正和掌握状况都尽力做到及时反馈,再次批改,让学生获得了一个较好的巩固机会。

6、做好课外辅导

全面关心学生,这是老师的神圣职责,在课后能对学生进行针对性的辅导,解答学生在理解教材与具体解题中的困难,使优生尽可能“吃饱”,获得进一步提高;使差生也能及时扫除学习障碍,增强学生信心,尽可能“吃得了”。充分调动学生学习数学的用心性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的潜力。

总之透过做好教学工作的每一环节,尽最大的努力,想出各种有效的办法,以提高教学质量。

高中数学教学计划 篇2

新学期已经开始,在学校工作总体思路的指导下,现将本学期数学组工作进行规划、设想,力争使本学期的工作扎实有效,为学校的发展做出新的贡献。

指导思想

以学校工作总体思路为指导,深入学习和贯彻新课程理念,以教育教学工作为重点,优化教学过程,提高课堂教学质量。结合数学组工作实际,用心开展教育教学研究活动,促进教师的专业发展,学生各项素质的提高,提高数学组教研工作水平。

工作目标

1、加强常规教学工作,优化教学过程,切实提高课堂教学质量。

2、加强校本教研,用心开展教学研究活动,鼓励教师根据教学实际开展教学研究,透过撰写教学反思类文章等促进教师的专业化发展。

3、掌握现代教育技术,用心开展网络教研,拓展教研的深度与广度。

4、组织好学生的数学实践活动,以调动学生学习用心性,丰富学生课余生活,促进其全面发展。

主要工作

1、备课做好教学准备是上好课的前提,本学期要求每位教师做好教案、教学用具、作业本等准备,以良好的精神状态进入课堂。

备课是上好课的基础,本学期数学组仍采用年级组群众备课形式,要求教案尽量做到环节齐全,反思具体,有价值。群众备课时,所有教师务必做好准备,每个单元负责教师要提前安排好资料及备课方式,对于教案中修改或补充的资料要及时地在旁边批注,电子教案的可在旁边用红色批注(发布校园网数学组板块内),使群众备课不流于形式,每节课前都要做到课前的“复备”。每一位教师在个人研究和群众备课的基础上构成适合自己、实用有效的教案,更好的为课堂教学服务。各年级组每月带给单元备课活动记录,在规定的群众备课时间,教师无特殊原因不得缺席。

提高课后反思的质量,提倡教学以后将课堂上精彩的地方进行实录,以案例形式进行剖析。对于原教案中不合理的及时记录,结合课堂重新修改和设计,同年级教师能够共同反思、共同提高,为以后的教学带给借鉴价值。数学教师每周反思不少于2次,每学期要有1-2篇较高水平的反思或教学案例,及时发布在向校园网上,学校将及时进行评审。

教案检查分平时抽查和定期检查两种形式,“推门课”后教师要及时带给本节课的教案,每月26号为组内统一检查教案时间,每月检查结果将公布在校园网数学组板块中的留言板中。

2、课堂教学课堂是教学的主阵地。教师不但要上好公开课,更要上好每一天的“常规课”。遵守学校教学常规中对课堂教学的要求。课堂上要用心的创设有效的教学情境,要重视学习方法、思考方法的渗透与指导,重视数学知识的应用性。学校将继续透过听“推门课”促进课堂教学水平的提高,发现教学新秀。公开课力求有特点,能侧重一个教学问题,促进组内教师的研讨。一学期做到每人一节,年轻教师上两节。课堂对于比较成熟的公开课或研讨课鼓励大家录像,保存资料,及时地向校园网推荐。

高中数学教学计划 篇3

高中是人生中最重要的阶段,规划好高中三年的学习对孩子将来将产生重大的影响。结合高中数学教学内容的特点及高考考试大纲,结合我校学生实际,制定本教学计划,请各年级组遵照执行。

一、首先要认识高中数学与初中数学特点的变化1、数学语言在抽象程度上突变。2、思维方法向理性层次跃迁。3、知识内容的整体数量剧增。4、知识的独立性大。

二、改变观念。

初中阶段,通过大量的练习,可使学生的成绩有明显的提高,这是因为初中数学知识相对比较浅显,更易于掌握,通过反复练习,提高了熟练程度,即可提高成绩,既使是这样,对有些问题理解得不够深刻甚至是不理解的。然而进入高中后,情况将发生极大的改变,若果不能掌握坚实的基本知识,不具备基本的数学思想方法,不经过大量的富有针对性的训练,学好高中数学将是非常困难的,因此,不管是老师还是学生都要转变观念,做好打攻坚战的思想准备。

三、做好复习和总结工作。

复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等尽量想得完整些。学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对容完善,而后应做好单元小结。单元小结内容应包括以下部分:本单元(章)的知识网络和本章的基本思想与方法(应以典型例题形式将其表达出来);

复习当中还有一个不可忽视的内容就是进行适当的训练。重要的不在做题多,而在于做题的效益要高。做题的目的在于检查学生学的知识,方法是否掌握得很好。因此,在准确地把握住基本知识和方法的基础 ……此处隐藏4187个字……法解决莫些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种几何问题,物理问题的工具,发展运算能力和解决实际问题的能力

第18周

两角和与差点正弦、余弦和正切公式 能以两角差点余弦公式导出两角和与差点正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它们的内在联系

第19周

简单的三角恒等变换

期末复习

高中数学教学计划 篇6

教材分析

集合概念的基本理论,称为集合论.它是近、现代数学的一个重要基础.一方面,许多重要的数学分支,如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其反映的数学思想,在越来越广泛的领域中得到应用.在小学和初中数学中,学生已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(直线、圆)等,有了一定的感性认识.这节内容是初中有关内容的深化和延伸.首先通过实例引出集合与集合元素的概念,然后通过实例加深对集合与集合元素的理解,最后介绍了集合的常用表示方法,包括列举法,描述法,还给出了画图表示集合的例子.本节的重点是集合的基本概念与表示方法,难点是运用集合的两种常用表示方法———列举法与描述法正确表示一些简单的集合.

教学目标

1. 初步理解集合的概念,了解有限集、无限集、空集的意义,知道常用数集及其记法.

2. 初步了解“属于”关系的意义,理解集合中元素的性质.

3. 掌握集合的表示法,通过把文字语言转化为符号语言(集合语言),培养学生的理解、化归、表达和处理问题的能力.

任务分析

这节内容学生已在小学、初中有了一定的了解,这里主要根据实例引出概念.介绍集合的概念采用由具体到抽象,再由抽象到具体的思维方法,学生容易接受.在引出概念时,从实例入手,由具体到抽象,由浅入深,便于学生理解,紧接着再通过实例理解概念.集合的表示方法也是通过实例加以说明,化难为易,便于学生掌握.

教学设计

一、问题情境

1. 在初中,我们学过哪些集合?

2. 在初中,我们用集合描述过什么?

学生讨论得出:

在初中代数里学习数的分类时,学过“正数的集合”,“负数的集合”;在学习一元一次不等式时,说它的所有解为不等式的解集.

在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.

3. “集合”一词与我们日常生活中的哪些词语的意义相近?

学生讨论得出:

“全体”、“一类”、“一群”、“所有”、“整体”,……

4. 请写出“小于10”的所有自然数.

0,1,2,3,4,5,6,7,8,9.这些可以构成一个集合.

5. 什么是集合?

二、建立模型

1. 集合的概念(先具体举例,然后进行描述性定义)

(1)某种指定的对象集在一起就成为一个集合,简称集.

(2)集合中的每个对象叫作这个集合的元素.

(3)集合中的元素与集合的关系:

a是集合A中的元素,称a属于集合A,记作a∈A;

a不是集合A中的元素,称a不属于集合A,记作aA.

例:设B={1,2,3},则1∈B,4

2. 集合中的元素具备的性质 B.

(1)确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是否属于这个集合的元素也就确定了.如上例,给出集合B,4不是集合的元素是可以确定的.

(2)互异性:集合中的元素是互异的,即集合中的元素是没有重复的.

例:若集合A={a,b},则a与b是不同的两个元素.

(3)无序性:集合中的元素无顺序.

例:集合{1,2}与集合{2,1}表示同一集合.

3. 常用的数集及其记法

全体非负整数的集合简称非负整数集(或自然数集),记作N.

非负整数集内排除0的集合简称正整数集,记作N*或N+;

全体整数的集合简称整数集,记作Z;

全体有理数的集合简称有理数集,记作Q;

全体实数的集合简称实数集,记作R.

4. 集合的表示方法

[问 题]

如何表示方程x2-3x+2=0的所有解?

(1)列举法

列举法是把集合中的元素一一列举出来的方法.

例:x2-3x+2=0的解集可表示为{1,2}.

(2)描述法

描述法是用确定的条件表示某些对象是否属于这个集合的方法.

例:①x2-3x+2=0的解集可表示为{x|x2-3x+2=0}.

②不等式x-3>2的解集可表示为{x|x-3>2}.

③Venn图法

例:x2-3x+2=0的解集可以表示为(1,2).

5. 集合的分类

(1)有限集:含有有限个元素的集合.例如,A={1,2}.

(2)无限集:含有无限个元素的集合.例如,N.

(3)空集:不含任何元素的集合,记作.例如,{x|x2+1=0,x∈R}=.

注:对于无限集,不宜采用列举法.

三、解释应用

[例 题]

1. 用适当的方法表示下列集合.

(1)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数.

(2)平面内到一个定点O的距离等于定长l(l>0)的所有点P.

(3)在平面a内,线段AB的垂直平分线.

(4)不等式2x-8<2的解集.

2. 用不同的方法表示下列集合.

(1){2,4,6,8}.

(2){x|x2+x-1=0}.

(3){x∈N|3

3. 已知A={x∈N|66-x∈N}.试用列举法表示集合A.

(A={0,3,5})

4. 用描述法表示在平面直角坐标中第一象限内的点的坐标的集合.

[练 习]

1. 用适当的方法表示下列集合.

(1)构成英语单词mathematics(数字)的全体字母.

(2)在自然集内,小于1000的奇数构成的集合.

(3)矩形构成的集合.

2. 用描述法表示下列集合.

(1){3,9,27,81,…}.

(2)

四、拓展延伸

把下列集合“翻译”成数学文字语言来叙述.

(1){(x,y)|y=x2+1,x∈R}.

(2){y|y=x2+1,x∈R}.

(3){(x,y)|y=x2+1,x∈R}.

(4){x|y=x2+1,y∈N*}.

《高中数学教学计划汇编6篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式